

The Net-Negative CO₂ Baseload Power Initiative

Addressing Climate Change Concerns

Protecting the Baseload Power Infrastructure

Securing the Economic Future of Coal Communities

West Virginia Public Energy Authority

April 27, 2022

Steven E. Winberg

Net-Negative CO₂ Baseload Generation Technology

- Established in June, 2021 as a 501(c)(6)
- The Team

Steve Winberg Chairman & CEO

Ken Humphreys Treas. & Sec.

Fred Palmer Senior Consultant

- Our Sponsors
 - CONSOL Energy
 - Peabody
 - PFBC-EET

Situation Assessment

The Facts

- Coal is not the problem CO₂ is the problem but coal opponents have demonized coal and the public largely
 accepts this demonization
- India and China came to coal's defense at COP26. Small word changes matter:
 - "Phase down" not "Phase out"
 - Unabated coal, not all coal
- An Administration change in three years is unlikely to substantially mitigate ESG, shareholder, State and international pressures that work against conventional coal.
- Coal opponents are well-funded, getting "richer", and view any coal win as a temporary stay of execution.
- The net effect of expanded renewable tax credits, renewable portfolio standards and other renewables incentives are reducing coal plant dispatchability and degrading the investment returns on coal power projects.
- EPA is ramping up its regulatory assault on coal both production and use.
- Power producers are moving away from coal.
- The coal industry needs to continue its defense, but defending the status quo is not enough.
- Offense is needed Coal needs to be "For Something".

Existing Coal Fleet

There Can be a Future for Coal

- Positioning the existing coal fleet for the future
 - Need to protect the value of the existing infrastructure
 - Forestall premature coal plant retirements
- Tax Credit Parity
 - Generation only qualifies if generator is dispatchable on demand.
 - Generation only qualifies if there is significant CO₂ reduction
- 45Q Revisions
- Building a post-2030 future that adds new profit streams and creates societal value, including addressing climate change concerns:
 - Coal-to-Products
 - Coal-derived CO₂-to-Products
 - Net-Negative CO₂ Coal-to-Energy Generation
 - Net-Negative CO₂ Baseload Power Technology
 - Net-Negative CO₂ Hydrogen Technology

Net-Negative CO₂ Baseload Power Technology

Coal with Biomass Co-firing and CCS

Proposed DOE Net-Negative CO₂ Baseload Power Program

Additional Details

- Qualifying projects:
 - Must have a positive economic impact on coal communities.
 - Must have net-negative emissions using coal/biomass co-firing with CCS
- \$300M for plant-specific engineering and economic studies
- \$30B to cost-share deployment of the initial
 ~10 net-negative plants
- Power plant owners may competitively apply
 - Grants for engineering/economic Project Concept Studies
 - Cost-share for pre-FID Project Development Activities
 - A package of incentives to attract commercial coinvestment and limit ratepayer impacts

U.S. Biomass Resource

Quantities are Sufficient to Sustainably Support Coal-Biomass Co-Firing

- Existing Coal Generation Infrastructure
 - 212 GW of utility-scale coal plants
 - Transmission, supply chain, and permitting infrastructure for the plants are in place
 - 59 GW (28%) are scheduled to retire by 2035 with many of these plant sites candidates for retrofitting or repowering
- Abundant Domestic Coal Resources
 - World's largest reserves
 - 470-year supply at 2020 consumption rates
- Sustainable Domestic Biomass Resources
 - 20% co-firing of entire existing coal fleet would require 125 millions tons/yr of biomass.
 - The 2030 domestic, available biomass resource is estimated to be 625 million tons.
 - The U.S. is the world's largest exporter of wood fuel pellets with 9 million tons of 2020 exports to fuel international coal plants.

Biomass Resource Available for New Uses

Source: U.S. Department of Energy. 2016. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks.

Tax Credit Parity

Renewable Production and Investment tax credits

- Initiated to reduce cost of renewables
- 30 years of renewable tax credits

Mission accomplished!

Table 1b. Estimated unweighted levelized cost of electricity (LCOE) and level	ized cost of s	torage
(LCOS) for new resources entering service in 2027 (2021 dollars per megawa	tthour)	
	Total	To

Plant type	Capacity factor (percent)	Levelized capital cost	Levelized fixed O&M ^a	Levelized variable cost	Levelized transmis- sion cost	Total system LCOE or LCOS	evelized tax credit ^b	Total LCOE or LCOS including tax credit
Dispatchable technologies								
Ultra-supercritical coal	85%	\$52.11	\$5.71	\$23.67	\$1.12	\$82.61	NA	\$82.61
Combined cycle	87%	\$9.36	\$1.68	\$27.77	\$1.14	\$39.94	NA	\$39.94
Advanced nuclear	90%	\$60.71	\$16.15	\$10.30	\$1.0	\$88.24	-\$5.52	\$81.71
Geothermal	90%	\$22.04	\$15.18	\$1.21	\$1.4	\$39.82	-\$2.20	\$37.62
Biomass	83%	\$40.80	\$18.10	\$30.07	\$1.1	\$90.17	NA	\$90.17
Resource-constrained techn	nologies							
Wind, onshore	41%	\$29.90	\$7.70	\$0.00	\$2.6	\$40.23	NA	\$40.23
Wind, offshore	44%	\$103.77	\$30.17	\$0.00	\$2.5	\$136.51	-\$31.13	\$105.38
Solar, standalone ^c	29%	\$26.60	\$6.38	\$0.00	\$3.5	\$36.49	-52.66	\$33.83
Solar, hybrid ^{c,d}	28%	\$34.98	\$13.92	\$0.00	\$3.63	\$52.53	- 3.50	\$49.03
Hydroelectric ^d	54%	\$46.58	\$11.48	\$4.13	\$2.08	\$64.27	NA	\$64.27
Capacity resource technolo	gies							
Combustion turbine	10%	\$53.78	\$8.37	\$45.83	\$9.89	\$117.86	NA	\$117.86
Battery storage	10%	\$64.03	\$29.64	\$24.83	\$10.05	\$128.55	NA	\$128.55

New Imperatives

- Maintain U.S. electricity grid stability & reliability dual challenge
 - Intermittent renewables presenting grid stability and reliability challenges
 - Exasperated by the need to expand electrification to industry, commercial, residential and transportation sectors
- Aggressive Administration CO₂ reduction targets
- Need for affordable electricity requires maximizing existing infrastructure

Tax Credit Parity

- Investment and Production Tax Credits (ITCs and PTCs)
 - Incentivize low-carbon, reliable power
 - Minimum dispatchability requirement
 - Nuclear, Renewable, CCS-enabled fossil plants, and Net-Negative fossil plants can all meet a dispatchability requirement either stand-alone or with battery/low-carbon power back-up
 - Zero-carbon emitting plants would be eligible for a Base PTC.
 - CCS-enabled fossil plants with <100% capture would be eligible for a reduced PTC.
 - Net-Negative plants, effectively with >100% capture would be eligible for an increased PTC.
- 45Q Carbon Capture & Storage Tax Credit
 - Amount should be indifferent to the carbon capture technology employed (e.g., amine capture, ammonia-based capture, or direct air capture). The result "tons captured" not the technology type should be incentivized.

Required Actions

Enabling Deployment of Net-Negative CO₂ Baseload Power Technology

Policy commitment to facilitate deployment of net-negative CO₂ baseload power, including:

- Enactment of The Net-Negative Baseload Power Act (H.R. 4891), which
 - Establishes a Net-Negative Baseload Power Program at DOE
 - Authorizes \$300M in immediately available grant funding for engineering and economic studies at existing coal power plants sites
 - Provides DOE with new management tools and directs the acceleration of projects that will reduce the carbon footprint of the existing coal fleet with Net-Negative Technology (CCS and biomass co-firing)
- Appropriating the \$300M in grant funding.
- Providing ~\$30B in funding for the DOE Net-Negative Baseload Power Program for cost-shared retrofits/repowering of a first tranche of plants
 - Accelerates the reduction of the coal fleet's carbon footprint
 - Protects grid reliability and coal communities
- Tax Credit Parity
- 45Q Revisions

